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NUMERICAL INVERSION OF FINITE TOEPLITZ MATRICES
AND VECTOR TOEPLITZ MATRICES

by

Erwin H. Bareiss

1. INTRODUCTION

Many problems of mathematical physics, statistics, and algebra
lead to the problem of finding the inverse of finite Toeplitz or Hankel
matrices. Well known are problems involving convolutions, integral equa-
tions with difference kernels, and least-square approximations by polyno-
mials. Although there exists an abundant literature on the mathematical
properties of Toeplitz matrices, there seem to be only a few references to
the problem of numerical inversion.!”™ The efficiencies of numerical meth-
ods involving Toeplitz or Hankel matrices are often judged under the
assumption that the inversion of a Toeplitz matrix of order n requires
of the order of n® multiplications. The purpose of this paper is to intro-
duce a new method by which the exact inversion can be accomplished
simply, using in the order of n? multiplications. Some efficient algorithms
are given. Extension is made to vector Toeplitz matrices which occurred
in the author's work.

II. INVERSION OF FINITE TOEPLITZ MATRICES
~
We present an algorithm to solve

Ax = ¢, {2.1)

where A is a Toeplitz matrix and ¢ a column vector denoted by

[isp ey a; A -‘ -Co-‘
a.y 3o a, e c,

i =lals B ag e PR S (2.2)
La_n a_(n-1) a_(n-2) ag Lcn

The basic idea is to transform (2.1) successively into
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The matrices A('l) have zero ele
main diagonal; the matrices Al

diagonals above the main diagonal.
matrix and A{n) a lower triangular

A(' l)x = &

(1), Al)x = c0); AlDx = -2 Al = @)

cosd A('n)x = c('n); A(n)x = c(n).

(2.3)

ments along the i subdiagonals below the
have zero elements along the i super-
Thus, A(-1) is an upper triangular
matrix. The transformation A

-itl) =

Al-1) affects only the rows i, i+l, ..., m; the transformation .A(l“)=>A(i)

affects only the rows 0, 1, ..., n-i.

forms

ald) -

K

s 2

Explicitly, Al-1/ and A i) assume the

aLﬂ) —\

(2.4)

(2.5)
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We note that the lower n-i+1 rows of A1) and the upper n-i+l rows of
A" again form (rectangular) Toeplitz matrices. Furthermore, 3o = a‘(,l) =
L=ag) == a?). The basic algorithm for the transformations {z.3)

is given by

ago) = 3y (j = -n, -n+1, ..., 0, ..., m);
e® o o (j =0,...,m), (2.6a)
J J
andifor i = "1, 2, ..an
e : =i+
A _(~i+1) =i (i-1) y oy %
3 = ay R a4 (§ = =0y cous =i=-13 0,....n-i);
a(i-l)
a(l) = a(l'l) -— a(?) (j = -n#is s =15 i+l .0n)i (2.6b)
=1y a2
0
) (5341}
-i (-i41) -3 (i=1) Ve 3 .
< = ¢ 5 € (G = i i+l, ...on)i
(i-1)
@) _ (-1) 2 (-i) . :
& = c.i i =51 C54i SR T P Bet). (2.6c¢)
0
1f Cj = 3n4i-j (r="0" 150 n), the formulas (.6c) are not needed. Instead,

+n is replaced by ntl in the formulas for agt‘).

The principal measure of the efficiency of algorithm (2.6) is the
number of multiplications needed to transform A into the triangular forms

A" If we had used ordinary Gaussian elimination, n® + (n- 1+ ...+1'=
%—n(n+ 1)(n +%) multiplications would be needed for one complete triangu-

larization of A. To achieve the ith transformation A'~2 Agrom A('_i”l and

A(i-l)‘, we conclude from (2.4) that only the elements a_'n1 ATietre 12+1):

a(()'i). o ag’_ii) have to be computed. This means (n-i) + (n-i+1) =

2(n-1i) + | multiplications. To obtain _A(i) from Ali-1) ang Al-1) we con-

i i). a\i i
clude from (2.5) that only aXy 4 ...0 8240 ai+)|’ S ag) have to be computed,

the element aéi) = a, being known. This means 2(n-1i) multiplications.
Therefore, the total number of multiplications to achieve Al-1n) and AN/ is

f: [Z(n-i)+ 1+ 2(1’!-1)] o an- n.

1=1
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(1) (+n) = 2 e A §
To compute ¢~ ') ..., ) , we need an additional n“ + n multiplications 1n
the general case, 2n multiplications in the special case ¢j = @n._j With
. T > 1 ey s =
Gaussian elimination 3(n®+ n) multiplications would be needed.

The solution of
A('n)x = c('n) or A(")x = c(“)
requires, as in Gaussian elimination, —;(nzfn) multiplications. However,

if we take rows 0, 1, ....[n ; l] of A(n) and rows [n; l]. X% 00 A(n")

to solve for x, we need only

n-1 n
1+2+... =] =
+ 2+ +[ > ]+1+2+ +[Z]

;(nz s (n odd)

2

|-

n (n even)
n+l
2
one-half. The number of quotients to be computed in (2.6) is only of order n.
[Note that (l/ao) ag'i‘“ (i=1, ..., n), can be obtained with one division and

n multiplications.] Thus, x in (2.1) can be obtained with no more than

multiplications, a saving of [ ][n_;_i] multiplications, i.e., more than

(2n®-n) + (n® +n) +% n? = 3=n® {2.7)

-
4
multiplications, using Eqs. (2.6). Gaussian elimination would require

%[n(n-{- 1)(2n+7)] = % n? +% n? +-75 n multiplitations. Algorithm (2.6) is

therefore always recommended when n > 4.

In the basic algorithm (2.6) all pivotal elements 2o and aé'i) are
implicitly assumed to be different from zero. We assume now that of the
2n + 1 elements in (2.2)

By B 2, Sy = 0 (v >0 p+v=n). (2.8)
If u+v =n+t 1, the matrix A is trivially reduced to a direct sum of two
triangular matrices and needs no further transformation.

One method to triangularize (2.2) if (2.8) holds is to let a, and
a;,’ take the roles of the pivotal elements. The formulas (2.6b) are then
replaced by
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ag") fori = 1,...,p+v-1;
a(-i) =
; R
-i+1 v-i i-1 S 4
aj —a'_aj+i for i = p+¥h ...o0i
v
and
B ey T 1 [ TR T | ifi =n-vi
N | SRR | ifi>n-v;
3—9-'1
a(l'l) ﬂ a('l) fori=1...n-9
j at~8) e
(i) 5
a.l =
J
agn'V) for i = n-v+l, ... n;
(G = -n+i, .omin(i-w v-1) v+itl, om but j = n).
For p = 1 and v = 0, these formulas become (2.6b).

the matrix (2.2),

A(-n) =

\ -n+1
| |
|

|(y-n) __Mv-n)
ay.n” T %2v-nt1

) o)

|
LQS;{"- _abm) o

V-n+l

under the conditions (2.8), takes the forms

o

SL)?;T-I 9 as:’)
|
|
|
|
|
|
|
|
|
"""" ag'?-)p-v7l

af2alh)
\\\ '
%)

0 e ;gu-n)

|

(2.9)

After n iterations,

(2.10)
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l‘(,n-v)___T(n-'V) | 0 0 _1
| | | \ \ l
;(_r:/-v)___ ;(n-v) |("'V)- 0 o
I(_:L v _ T(_r;-v) ?gn-rl-ag\_;”)a,, QA
| | |
Vwapar) _Lap-1)  Lepei)
I'y+y,-n 5. |zv+p-n -2 IZW# -n-i
¢ e | | '
A | || ||
|
| : '
[ ' '
A |
|
| | I
l | |
I | |
I I |
| | |
La(.ogz‘ NN ag’-)nn a(:_)n ------

where in A(n) we have a(o) = (n-'u) it

(2.11)

a,. To complete the triangu-

larization we have to trlangulanze the square matrix of order v formed

by the last V rows and first v columns of Al~

1II. INVERSION OF SYMMETRIC TOEPLITZ MATRICES
»

Let the algorithm (2.6) be replaced by

a§°) = ay (-S> (o) » o (0 =j =n)
and fori = 1,2,...,mn
i 1~1)
(sd)ew o -<a+1)y ali-1) o s 1.
aj ( i+1 ‘()1-1) _)lﬂl (=-n.0r-i=13 0, ...
SRR
agl) = agl'l) —(l-m j- :*l) (j = -n+iy ..., 05 ixL,
(-i-.l)
() - aledga) -i (i-1) e .
o i i+1) _ N e (G = i i+1, ...an)i

» D=5}

S

(3.1a)

(3.1b)

(3.1¢)
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(i-l)

WeuiaalsiBon lH4) (- ;
cj B c§1 0 a('i‘“) cj+;+l (j=0,1,...,n-i).
0

This algorithm is symmetric, and a(i) does not depend on a§'i). It is less

efficient than (2.6) since agi) (i = 1,...,n)must be computed. However, if
A in (2.2) is symmetric, i.e.,

a = : I'= 1a s oovs ’ .
2y = a (G 2 n) (3.2)

it follows by induction that

agi) - alt). (3.3)

Assume a‘l-l) = a(_3i+l) to be true; then by (3.1b)

j
el ) R (ke (i) W
i) -i+1 =1 S 1 e b 1 -i+1) _ 1
a_.j = a_j - a(i-l) a-j+li = aj - a('i“) aj_.1 = aj .
0 0

Since by (3.2) the assumption is true for i = 0, (3.3) is proved. The effect
is that the element in the j'P row and kth column of All) in (2.5) is equal to
the element of the (n+1-j)th row and (n+1-h)th column of Al-1) in (2.4).
The algorithm (3.1) reduces therefore for symmetric Toeplits matrices to

a§°) E aljl(-nsj =n); c§°) = ¢ (0=j=n) (3.4a)
a(i-l)
() is glsayidiclonfi-g),
aj’ = &yt - G0 aij
0 (j = -n+i, ..., 0; 341, .0 ) (3.4b)
a§-i) = a(_ij)i
G
e - Cgl-l)'iﬂ°§l§+') (G = 0,1, ... n-i)i
%
(3.4c)
: AT o, SN
cg_l) - cg-lﬂ) --t—ncgl_;l) (§ = 1, i+, ...om).
)

This algorithm takes n(n- 1) less multiplications than (;.6), and n? less
multiplications than (3.1), for the computation of the a}il = 1o m)
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Since symmetric Toeplitz matrices are centrosymmetric matrices,
the computational work can also be reduced as follows.

Let a, = a_; in (2.2), subtract row n-j from row j(j =10 Laosins [ﬁ])

in (2.1), and simplify to obtain for the relation
[y ="y Bi =80y B2-8p.p e a[n] -a [nﬂ'_xo- . 1 [ee-en —‘
n-

ay-ap Bg -8, B=-Bp.g e e Xy - Xp_y €3 = Cnoy

a; - ap.; 8y = 8n.4 p=8p.g oer o X2 - Xn.2 = |ea - Cpo2

e WL

(3.5a)
Similarly, add row n-j to row J(] =0 L coes [7]) to obtain the relation
ap + ap ay+ap.; 2+t 3an.; Xo + Xp Co + Cn
ay + anpn.) ap + an.2 a); + an.3 X)) + Xpo) Cy +Cnpoy
= : (3.5b)
a;+apn.z a1t3an-3 20t 23n-4 Xz T Xn-2 Cz * Cn-2

Therefore, the symmetric problem (2.1) has been reduced to two symmetric
problems of order (n+ 1)/2 if n is odd, and of orders n/2 and (n/2) + 1 if

n is even,

If n is odd, the solution of both (3.5a) and (3.5b) for Xg ...» Xp
requires

(n?-1)(n+15)
24

multiplications plus (n+ 1) multiplications by 2 (shift operations'), needed

to obtain Xg» ...» Xp from Xefxp ... Xn-o13¥Xn+1- This compares with
2 2

n(n+1)(n+8)
6

multiplications using "symmetric" Gaussian elimination on the original
matrix, and to
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9n® - 1 k=

4
multiplications to solve the problem by (3.4). It follows that the reduction
method (3.5) is recommended up to about n = 40, and the algorithm (3.4)
for n > 40,

IV. VECTOR TOEPLITZ MATRICES

We define vector Toeplitz matrices as rectangular matrices whose
elements are vectors and whose diagonals consist of like elements, except
for the vector elements in the last row, which may be obtained by omitting
the last components of corresponding full vector elements. Thus a vector
Toeplitz matrix has the form

Vo vy vy S ]
vy Vo vy PO
V.2 v_, Vo wiy Vg
Alv) = ; (4.1)
Vieg Vg Va-p v YT}
W Wy Wz_l wr_z
g, $ E

If we define the elements in (4.1) by

3kp —1 3kp _1
2kp-1 2kp-1
Vk = a'kp-Z H Wk = akp_z » (4.2)
a a
kp-p+1 kp+£Lp-n
S i g g e

where £, p, and n are related by

- [3)

then A(v) is a block matrix representation of A, where
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e =
& ap 2;p R
a3 ag_, 2p-1 e Brpoy
al, ag_; 235p-2 e 3ppoa
o a, ap e B(ro)p
d.p-1 24 2p-1 e+ 3(r-1)p-1
a.p-z2 2-2 ap-2 s (r_1)p-2
A = 3 (4.4)
a.2p 2.p 20 e 3(r-2)p
a-Zp-l a-p—l a_, a(l‘-Z)p-l
a_gp 2-(L-1)p 2-(L-2)p " a(r-L)p
La_n a.n 3p-n .+ @rp.n

In order that the inversion problem bg meaningful, we assume that
r = n. We shall present an algorithm that transforms the submatrix

By ap ap s 3np _1
8., %5 %pg anp-1 e
La_n a85.n 3p-n - an(p-1)

of A into an upper triangular form. Instead of using "minus" and "plus"
interations as in Section II, we introduce an auxiliary matrix

bo bl bz ese By T
g bo bl bx._l
B = iy by isin Prig - (4.6)
b,_g bpg by_g ..o brig
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The triangularization of (4.5) is achieved in n recursive steps, transform-
ing A = Al®), B = B(0) successively into A1), s(1), a(@), ), ., aln-p),
B(n-p); aln-p+1), aln-p+2), ., Aln). In each transformation Al) = ali+),

the rows O, ..., i remain unchanged, and the elements to become new zeros
are

(i+1) pl e : y (i+1) _
a(p-l)i-j =0 (j=1,2,...,min(p-1,n-1i)), a_l(p+i) = 0. (4.7a)

Thus the matrix Al) contains i zeros in each row j Z i (j = 0, 1, ..., n).

The matrix B(i) contains the element a, on the diagonal, and b{i) = ... =
bli) = o (i =1) are zero elements. The algorithm for the not identically

zero elements is as follows. Define k\7/, a(s"), and bl((° by

n-p< pk(T) +T=n (k(T), T positive integers);

a.(so) - as (-n =85S rp);
bl((o) e (=B & v)
Then
(i+1) (i) agi) )i-j (i)
e td ® %kp-i-} '—j{)_l-—Jal:p-i (75
(p-1)i
(j =1,2, ..., min(p-1; n-i); k = RO 1), )
(i+1) _ () a(-ixz-i i) (4.7¢)
k-1)p-i ~ Plk-1)p-i T T ay K :
s @), 2,01 1L 042, L0 Th
B . .o
p{i+t) < p{i) o e B (i41) plit)) = 4 (4.7d)

& (p-1)(i+1)

(k = -[%"'l]. el L M S i S n-p).

These recurrence relations are used for i = 0,1, 2,...,n-1; however,
(4.7d) can be terminated at i = n - p - L.
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The final matrix A(n) is of upper triangular form

KOO RN SO
0 ag_)l aglg)_l at(]lg_l ag_‘g_l

7Sl T T C S R I (4.8)
LO 0 0 al(,:;)_n ag,';)_n

To compare the efficiency of (4.7) with the ordinary Gaussian elimi-
nation process, we determine the number of multiplications necessary to
triangularize (4.5). From (4.8) there follows for r = n that the transforma-
tion A i-1)=> A(i) involves only the (p+1) n - i+ 1 elements a(_ixz. a(_irz_”. .
an1 _j- Of these, by (4.7b, c), ip elements are zero and need not be calcu-
latpéd. Therefore, each such transformation requires (p+1)n - (p+ 1)i+1
multiplications if i = 1, 2, ..., n-p+1. In addition, the transformations
Bli-1) to BW), by (4.7d), involve the [-n—-p—pﬁ—l] +n+1l = [P-—;+—l] +n
elements b(ﬁ), - n_-1_+_l] < k =n, if r = n. Of these elements, i + 1 are

known, namely, bgi) = ap bEi) S uve = bi(l) = 0, and need not be computed.
-i+ 1
Therefore each transformation (4.7d) requires Bl ol et et

plications if i = 1, 2, ..., n-p+l. The total number of multiplications to
obtain A(n-P+1) and B(n-p+1) is no greater than*

(n-p+1) otk d *
z [(p+l)n-(p*l)i+l¢——p——~n-i-l]:
i=1 (49)
(p+1)n+p-2)+2
(n-p+ l)——zﬁ—_—'
The matrix Aln-p+1) for r = n has the form
L G o ]
?\ a(pl-)l ___________ ai:g_l
\ \\ N 'l
£ Tl (n-p+1) i (o-pta) ot
e Ll N\ _(n-p+1 | (n-p+1
? ? ?(n-p-rl)(p-l) ?np-n+p-l
- =
_____ ! (n-p+1) | (n-p+1)
\_0 3 2(n- p+l)p-n ol an:) -l:: :

14
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Therefore, to bring (4.10) into the triangular form Aln) requires the same
number of multiplications as a square matrix of order p, i.e.,

plp-1)(2p-1) (4.11)

multiplications. Addition of (4.11) to (4.9) yields the upper limit for the
total number of multiplications required to transform A into A n) (r = n),

namely,

+1) =2 : -
(n-p+1) p+1) (“;'pp )+2 2 12(29 2 (4.12a)
3 2 3
o B e BRER
..Z(n p)+3 == = (4.12b)

The same transformation using the Gaussian algorithm requires

n3
(4.13)

%

%(n+l)(2n+l) ~

multiplications. The savings factor, the ratio (4.13) to (4.12), is asymp-

2
totically T%’ If p=n+ 1, (4.7) reduces the Gaussian elimination method.
Ifp=1and r =

(2.6b).

n, (4.7) is just another representation for the algorithm

To solve

Ax = 0 (r = n+1l) (4.14)

for x we have to increase the number given by (4.12a) by the following

numbers of multiplications:

(i) i :

n to calculate al i, =t aml
i & L 2
n - p to calculate b(nll (i=1,....n-p)

)

1 :
rx—(ll;—)to perform the back substitution in A(n :

These numbers combine to a total of

%(Ms)_p (4.15)

additional multiplications.
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We realize that we have not included an error and stability analysis
for the algorithms. No simple operator representation in matrix form has
been found for the description of the algorithms; it would facilitate these
analyses. We hope, however, the answers to these problems will be solved
and the new algorithms will prove themselves useful in practical applications.
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